

2nd Symposium on Innovation Cooperation in Technology and International Transfer of Technology China + 16 CEEC Format Nitra, Sept 23, 2015

Plant Biotechnology Innovations in Plant Production

(cases from our practice)

Ján Kraic et al.

National Agricultural and Food Centre - Research Institute of Plant Production Piešťany, Slovak Republic

Topics:

- 1. Assisted plant breeding
 - Healthier grains, grains as medicine
- 2. Plant molecular breeding
- 3. Gene transfer
 - Wheat quality improvement by new proteins
 - Cereals producing polyunsaturated fatty acids in grains
 - GM plants for agriculture

Plant production & Biotechnology

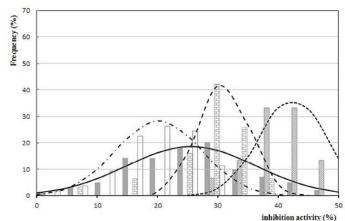
Plant production - cultivation of plants (and other life forms) for **food**, **feed**, **fiber**, **raw materials**, **energy** (biofuel), **drugs** and **other** products used to sustain and improve the human life (International Labour Organization)

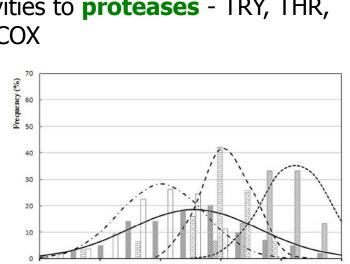
Biotechnology - the **use** of **living systems** and **organisms** to **develop** or make **products**, or "any technological application that uses biological systems, living organisms or derivatives thereof, to make or modify products or processes for specific use" (UN Convention on Biological Diversity, Art. 2)

1. Assisted Plant Breeding

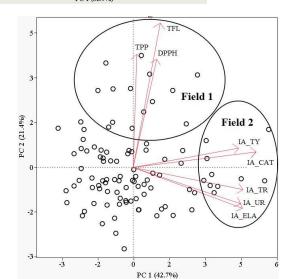
Biological activity of cereal grains

P C RESEARCH INSTITUTE OF PLANT PRODUCTION


- "Colored" wheat new compounds in grain –
 anthocyanins glycosylated cyanidins, delphinidins,
 malvinidins, pelargonidins, petunidins, and peonidins
 accumulated in aleurone layer or pericarp natural
 compounds purple, blue, and red colored wheat
 seeds
- Improvement of staple foods and feeds consumed daily by health-promoting and diseasepreventing agents
- Special wheat cv. PS Kalkulka (2014) purple grains – functional foods production

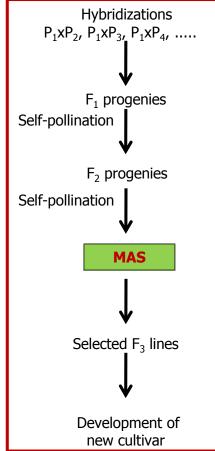


Biological activity of cereal grains


- Extracts from seeds wheat, barley, oat
- Total polyphenols
- Total flavonoids
- Antioxidant activity (DPPH)
- Inhibitory activities to proteases TRY, THR, URO, CAT, ELA, COX

Frequency distribution of IA ELA of oat extracts

2. Plant Molecular Breeding

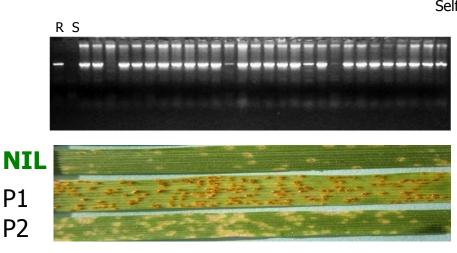

Wheat improvement – **Breeding** + **MAS**

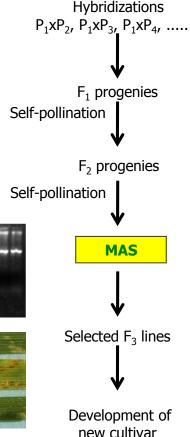
Plant molecular breeding approach:

- Hybridization Donor x Acceptor
- Selection by molecular markers
- Line(s) development, multiplication, testing, registration, marketing

Wheat improvement – **resistance**

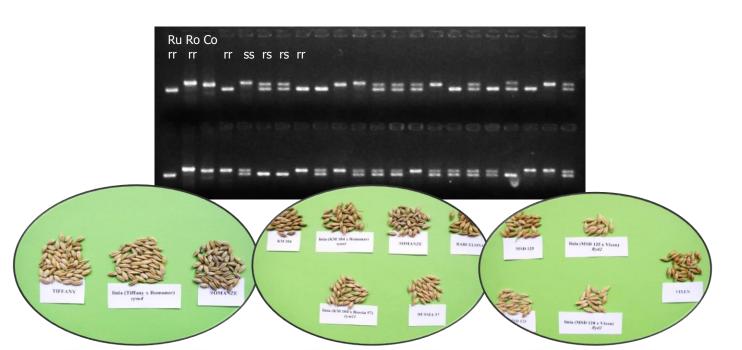
- Improvement of **leaf rust resistance**
- Effective *Lr* gene(s) *Lr19*, *Lr24*, *Lr35*, *Lr19* + *Lr24*, ...

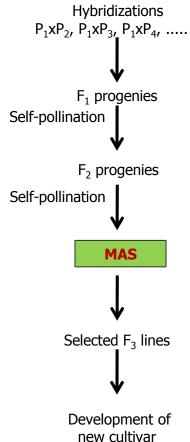

P1


P2

• Effective (DNA) marker system - PCR-based

NIL P2





Barley improvement – **resistance**

N P NATIONAL AGRICULTURAL AND FOOD CENTRE
P C RESEARCH INSTITUTE OF PLANT PRODUCTION

- Example virus resistance (BaYMV + BaMMV)
- Effective *rym* gene(s) *rym4*, *rym11*, *rym4* + rym11
- Effective (DNA) marker system PCR-based

3. Gene transfer

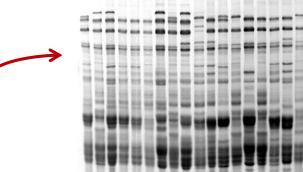
Wheat quality improvement by new proteins

Wheat improvement – **proteins**

- Wheat quality influenced by seed storage proteins
- Gliadins & Glutenins LMW-GS & HMW-GS
- HMW-GS x- or y-type of subunit Glu-1 loci → hexaploid wheat contains theoretically ≤ 6 different HMW-GS
- HMW-GSs contain signal sequence + domain + N- and C- terminal domains consists of amino acids (including Cys)
- Cysteine residues important role in intermolecular S-S bonds in dough influencing final bread-making quality

Where are "new and better" genes & proteins ???

Genetic resources - protein & gene sources

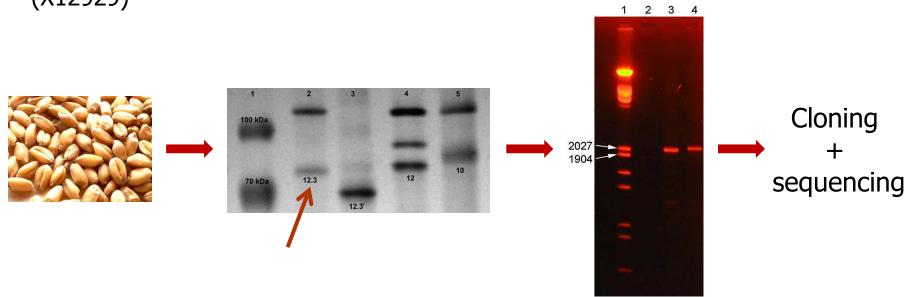


 Where? – national Genebank – maintained wheat genetic resources collection contains ~5000 wheat accessions

 How ? – extensive screening in seed storage protein patterns

Protein mining in genetic resources

Interest to:


- Identify **well-known** & highly **frequented** HMW-GS improving quality (1, 2, 2*, 7+8, 7+9, 5+10 ...)
- Identify **low frequented** HMW-GS increasing quality (15+16, 17+18 ...)
- Find new HMW-GS with unknown effect in obsolete cultivars or landraces of *T. aestivum* originated from similar environment and agricultural systems
- Look for new HMW-GS with unknown effect in "exotic" germplasm of *T. aestivum* or other *Triticum* species

From protein to gene (story of cv. Noe)

 T. aestivum L. cv. Noe – French obsolete cultivar, genetic background of Russian winter wheat Odyssea, released in 19th century – possess new HMW-GS 1Dy12.3

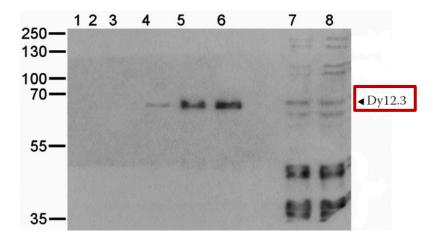
Amplification with primers derived from 1Dy12 (X03041) and 1Dy10 (X12929)

N P NATIONAL AGRICULTU AND FOOD CENTRE P C RESEARCH INSTITUTE (PLANT PRODUCTION

Protein and **gene characterization** (story of cv. Noe)

• 1Dy12.3 – different amino acid composition

Table 3. Comparison of essential amino acid content in selected HMW-GS 1Dy subunits of genus *Triticum* L. and *Ae. tauschii*


Essential	Subunits							
amino acids	1Dy12.3	1Dy10	1Dy12	1Dy10.1	$1D^{t}y10$	1Dy12 ^t	1Dy12.1 ^t	1Dy13 ^t
Phe	3	3	3	3	3	3	3	3
His	12	13	13	13	14	14	13	13
Ile	7	5	8	8	7	6	6	5
Lys	9	8	9	8	7	8	9	8
Leu	28	28	29	27	28	29	29	29
Met	6	4	5	4	4	4	4	4
Thr	25	26	25	26	27	26	26	27
Val	19	20	19	19	19	18	18	18
Trp	6	6	6	6	7	6	6	5

N P NATIONAL AGRICULTURAL AND FOOD CENTRE P C RESEARCH INSTITUTE OF PLANT PRODUCTION

Heterologous expression of 1Dy12.3 (story of cv. Noe)

• Western blott analyses of cell lysates of *E. coli* transformed with 1Dy12.3

3. Gene transfer

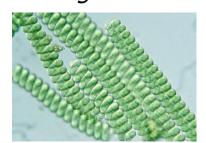
Cereals producing polyunsaturated fatty acids in grains

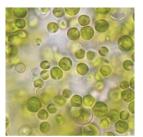
Polyunsaturated fatty acids (PUFAs)

- Unique structural and functional characteristics of PUFAs:
 - Regulation of architecture, dynamics, phase transition, permeability of membranes – modulating behavior of membrane-bound proteins
 - Controlling of certain genes expression, affecting processes including FA biosynthesis and cholesterol transport
 - Precursors of many metabolites (prostaglandins, leukotrienes, hydroxyfatty acids) regulating critical biological functions
 - PUFAs are required in every organ in body to function normally
 - Insufficient consumption of PUFAs leads to abnormalities in skin, diabetes, cardiovascular, endocrine, nervous, immune, inflammatory, respiratory, reproductive systems, etc.
 - Mammals are not able to synthesize PUFAs → must be supplied in diet

PUFAs of interest

- PUFAs of interests γ-linolenic acid (18:3 n-6; GLA), dihomo-γ-linolenic acid (20:3 n-6; DGLA), arachidonic acid (20:4 n-6; AA), eicosapentaenoic acid (20:5 n-3; EPA), docosapentaenoic acid (22:5 n-3; DPA), docosahexaenoic acid (22:6 n-3; DHA)
- PUFAs are insufficient in natural sources of food and feed
- Strategies for food and feed improvement by PUFAs:
 - ✓ enrichment by PUFAs produced elsewhere (external)
 - ✓ production by own (internal)
- Cereal grains are low in fatty acids content
- Linoleic acid major fatty acid of n-6 family in grains, a-linolenic acid (n-3 family) in very small quantities


Sources of PUFAs



Beneficial sources of PUFAs – fishes (tuna, herring, menhaden, sardine, salmon) or shellfishes (blue crab, oyster, lobster, mussels) – oils (C20, C22, n-3) and fatty acids – EPA, DPA, DHA

 Alternative sources – marine bacteria, heterotrophic and phototrophic microalgae (Spirulina platensis, Chlorela vulgaris, Porphyridium cruentum, Sargassum salicifolium, Euglena gracilis), mosses

Sources of **PUFAs**

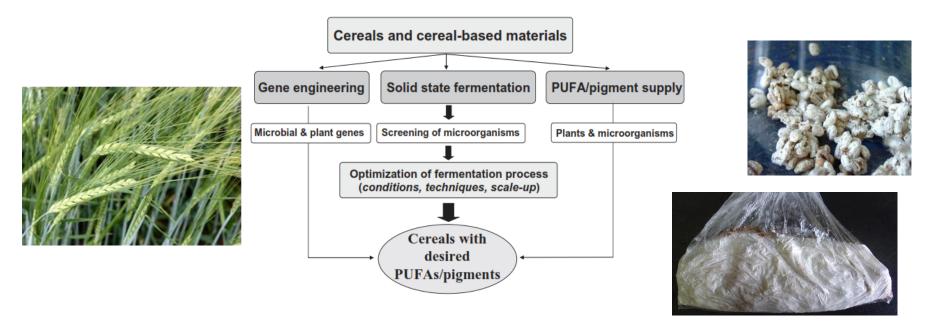
Alternative sources – oleaginous fungi – fungi Zygomycetes (Thamnidium elegans, Pythium irregulare, Rhizopus arrhizus, Cunninghamella echinulata, Mucor circinelloides, Mortierella alpina)

■ Particularly active in synthesis of PUFAs — donors of **genes** involved in PUFAs

biosynthesis

Plant sources of PUFAs

- Main sources of C18 PUFAs seeds with dominant LA (18:2, n-6) and ALA (18:3, n-3) but occurrence of significant levels of essential GLA in plants is rare
- Most commercially important sources of GLA seeds of evening primrose (8–10%), borage seeds (24–25%), black currant seeds (16–17%)



 PUFAs above C18 cannot be synthesized by higher plants in any significant amounts owing to a lack of requisite enzymes

PUFAs in cereals?

- Challenge for enrichment of cereals with PUFAs:
 - **Solid state fermentations** oleaginous fungi (*Zygomycetes, Thamnidium* sp., *Cunninghamella* sp., *Mucor* sp., *Mortierella* sp.) on crop residues
 - Genetic engineering of plants → "producers" of FA

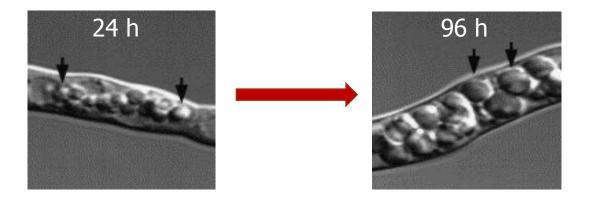
Gene transfer & PUFAs production **in plants**

Some plant species were modified for GLA production:

Transformed	Source of	Content of GLA	Authors,	
Plant	<i>D6D</i> gene	(% of FA)	year	
Tobacco	Cyanobacterium	~1,2 %	Reddy, Thomas,	
(<i>Nicotiniana tabacum</i>)			1996	
Tobacco	Borage	~13 %	Sayanova et al.,	
(<i>Nicotiniana tabacum</i>)	(Borago officinalis)		1997	
Canola	Mortierella alpina	43 %	Liu et al.,	
(<i>Brassica na</i> pus L.)			2001	
Mustard greens	Pythium irregulare	25-40 %	Hong et al.,	
(<i>Brassica juncea</i>)			2002	
Soybean	Borage	31 %	Sato et al.,	
(Glycine max)	(Borago officinalis)		2004	
Tobacco	Phaeodactylum	29,3 %	Abbadi et al.,	
(<i>Nicotiniana tabacum</i>)	tricornutum		2004	
Linseed	Phaeodactylum	16,8 %	Abbadi et al.,	
(Linum usitatssimum)	tricornutum		2004	
Mustard greens	Pythium irregulare	27-29 %	Wu et al.,	
(<i>Brassica juncea</i>)			2005	
Safflower	Saprolegia diclina	70 %	Nykiforuk et al.,	
(Carthamus tinctorius)			2012	
Safflower	Mortierella alpina	50 %	Nykiforuk et al.,	
(Carthamus tinctorius)			2012	

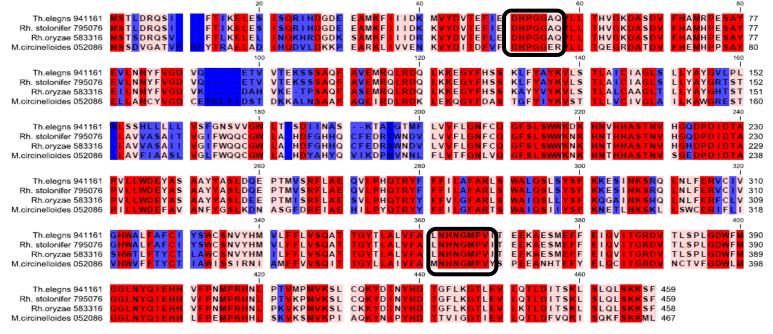
- Barley (*Hordeum vulgare* L.) **absence** of n-3 and n-6 PUFAs
- Cereals do not produce essential PUFAs but produce metabolites that are substrates for enzymes catalyzing formation of n-6 PUFAs Δ-6-desaturase catalyses conversion of LA (C18:2, n-6) to GLA (C18:3, n-6)
- Changes in composition of fatty acids in cereal grains are not feasible by conventional breeding

How to **produce GLA** in **barley** ???

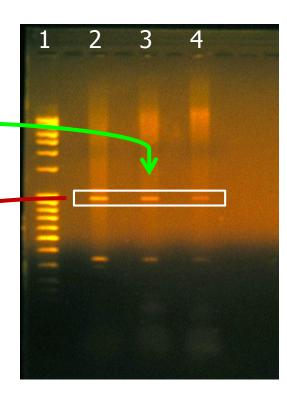


■ **Δ-6-desaturase** – catalyses conversion of LA (C18:2, n-6) to GLA (C18:3, n-6)

	Linolenic acid (LA)	18:2n-6		18:3n-3	α-Linolenic acid (ALA)
		\downarrow	<mark>Δ6-desaturase</mark>	\downarrow	
Cereals	γ-Linolenic acid (GLA)	18:31-6		18: 4 n-3	Stearidonic acid (SDA)
terminate		\downarrow		\downarrow	
fatty acid	Dihomo-γ-linolenic acid (DGLA)	20:3n-6		20:4n-3	
synthesis		\downarrow	Δ5-desaturase	\downarrow	
at this level	Arachidonic acid (AA)	20:4n-6		20:5n-3	Eicosapentaeonic acid (El
due to		\downarrow		\downarrow	
absence of	Docosatetraeonic acid (DPA)	22:4n-6		22:5n-3	
D6D		\downarrow	Δ4-desaturase	\downarrow	
		22:5n-6		22:6n-3	Docosahexaeonic acid (Dł



- Source of Δ-6-desaturase gene for genetic transformation of barley oleaginous fungus *Thamnidium elegans* CC1456 producing:
 - 20% of fats in dry mass
 - 15-30% of GLA

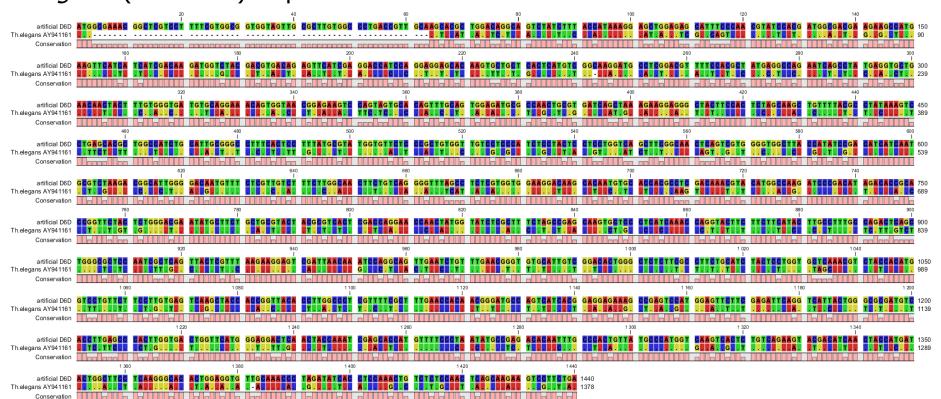

- **D6D** gene isolation from *Thamnidium elegans* CC1456:
 - RNA isolation and cDNA synthesis
 - PCR design of degenerated primers for D6D cDNA amplification by: primers 5'-GAYCAYCCYGGWGGWCT-3' and 5'-ACRGGCATWCCGTTRTGGTT-3':

- Amplification of D6D gene from *T. elegans* cDNA:
 - 1 100 bp ladder
 - 2-4 fragment from PCR cca 930 bp

Cloning and sequencing

Thamnidium elegans
 sequence of D6D
 cDNA – Genbank
 accession HM856138:

Thamnidium elegans strain CCF 1456 delta-6 desaturase mRNA, partial cds

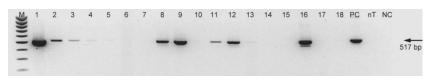

GenBank: HM856138.1 FASTA Graphics

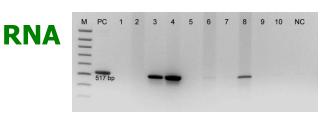
```
Go to: ✓
```

```
LOCUS
            HM856138
                                     932 bp
                                               mRNA
                                                       linear PLN 09-OCT-2010
           Thamnidium elegans strain CCF 1456 delta-6 desaturase mRNA, partial
DEFINITION
            cds.
ACCESSION
            HM856138
VERSION
            HM856138.1 GI:308096429
KEYWORDS
SOURCE
            Thamnidium elegans
 ORGANISM Thamnidium elegans
            Eukaryota; Fungi; Fungi incertae sedis; Early diverging fungal
            lineages; Mucoromycotina; Mucorales; Mucorineae; Mucoraceae;
            Thamnidium.
REFERENCE
           1 (bases 1 to 932)
  AUTHORS
           Mihalik, D. and Klempova, T.
  TITLE
           Partial cDNA of delta-6-desaturase from Thamnidium elegans CCF 1456
           Unpublished
  JOURNAL
REFERENCE
           2 (bases 1 to 932)
  AUTHORS
           Mihalik, D. and Klempova, T.
  TITLE
            Direct Submission
           Submitted (21-JUN-2010) Dept. of Plant Biotechnology, Research
  JOURNAL
           Centre of Plant Production, Bratislavska Cesta 122, Piestany,
            Piestany 92168, Slovakia
FEATURES
                     Location/Qualifiers
     source
                     1..932
                     /organism="Thamnidium elegans"
                     /mol type="mRNA"
                     /strain="CCF 1456"
```

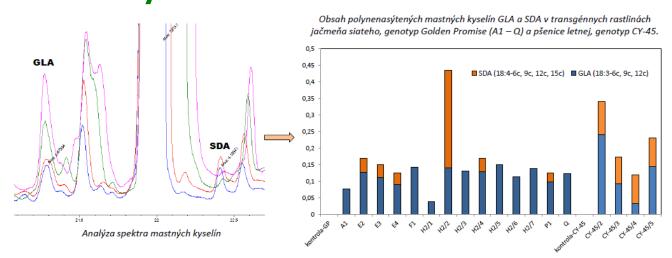

Synthetic biology approach – artificial **gene synthesis** of **gene** – based on *T. elegans* (AY941161) sequence :

• **D6D gene transfer** to barley:



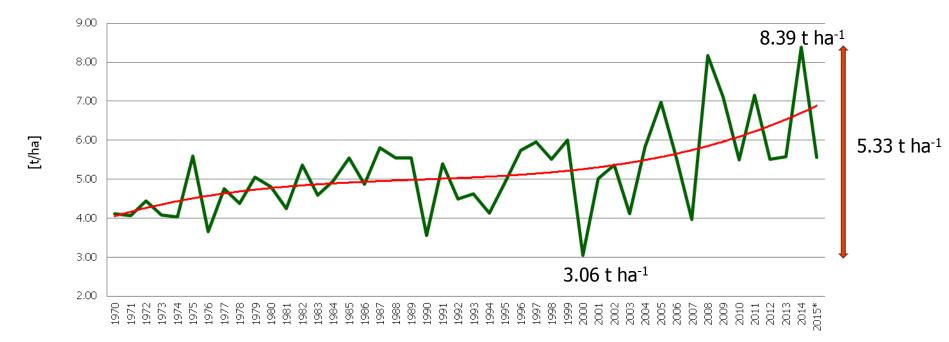

Barley nutritional quality **improvement**

N P NATIONAL AGRICULTURAL AND FOOD CENTRE
P C RESEARCH INSTITUTE OF PLANT PRODUCTION


DNA

- Presence and transcription of Δ6D transgene in T₀ barleys
- Expression of GLA and SDA in mature barley seeds

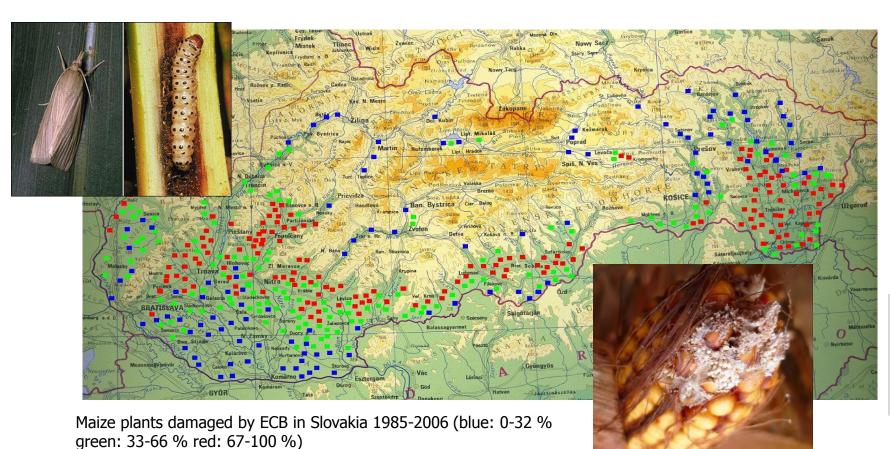
Fatty acids



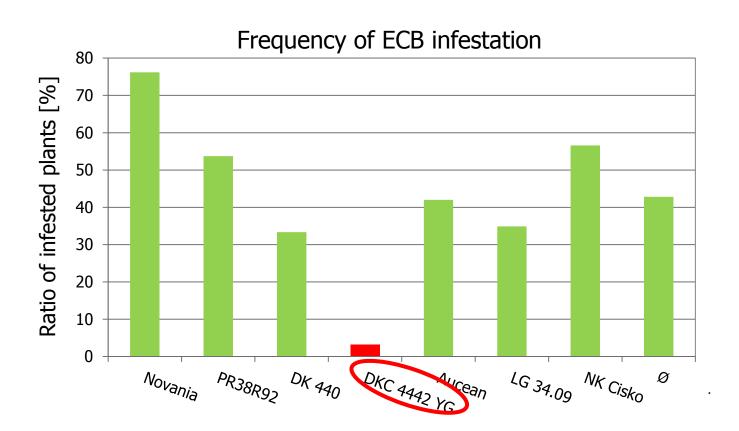
3. Gene transfer

GM plants for agriculture

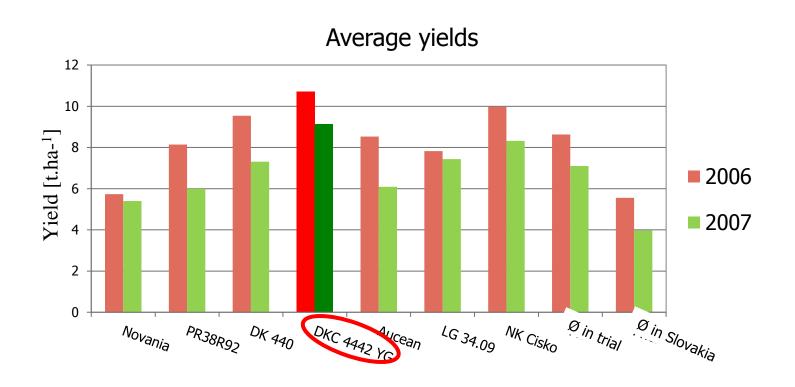
Long-term **trend** in **maize production** in Slovakia

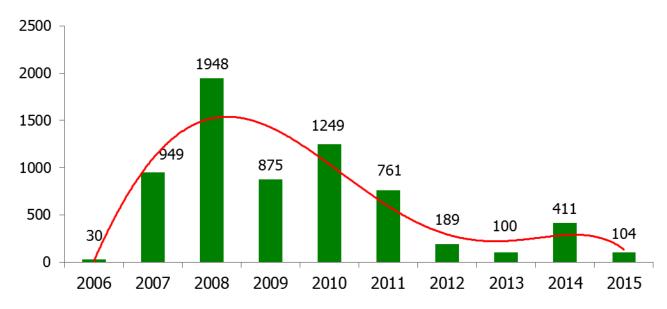

- Average yield of grain maize in Slovakia 1970-2015*:

- Average yield (2000-2015): **5.80 t ha⁻¹**


Cagáň, 2007

Potention of ECB resistant GM maize in Slovakia





Benefit of **ECB resistant** MON 810 to in Slovakia in climatically different years (2006, 2007)

Story of MON 810 in Slovakia (2006-2015)

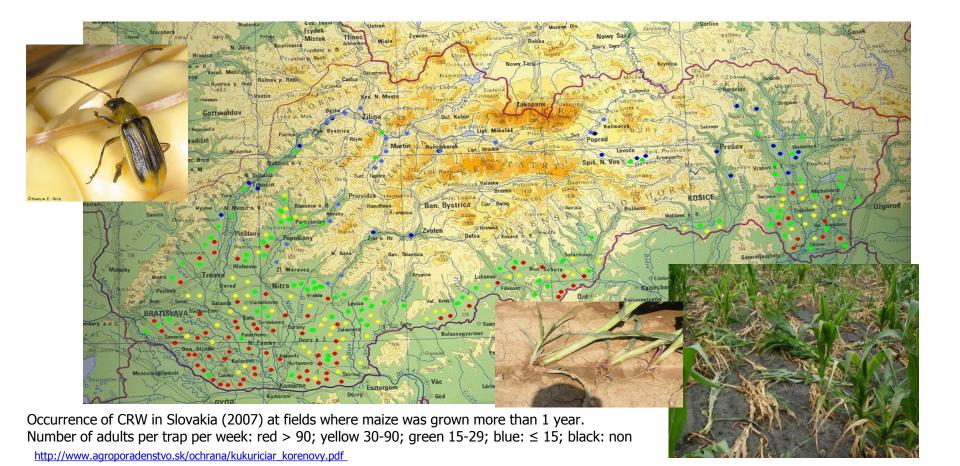
- Average (2008-2012) maize production: 1.15 mil tons
- Overproduction by $\approx 45 \%$
- Starch processing (Amylum) 350 000 tones (700 000 tones)
- Bioethanol production (Enviral) 300 000 tones

Expected economical **benefit** of **MON 810** growing in Slovakia

	E	F	D	CZ	P	PL	SK
Ø yield Bt vs. conventional maize (%)	+1-15 %	+5-24 %	+14-15 %	+9-10 %	+12 %	?	+10-14%
Ø impact on profitability (%)	+12	+16-21 %	+12-14 %	+15	+22	?	+8-18%
Impact on content of mycotoxins	Signif. decreas.	Signif. decreas.	Signif. decreas.	Signif. decreas.	?	Signif. decreas.	?

(Brookes, G.: The benefits of adopting genetically modified, insect resistant (Bt) maize in the European Union (EU): first results from 1998-2006 plantings)

Observed economical **benefit** of **MON 810** growing in Slovakia


Locality	Yield of control* [t/ha]	Yield of YieldGard® [t/ha]	Yield increasing [t/ha]	Yield increasing [%]	Income increasing [€/ha]
1	5,13	6,37	1,34	+24	+119.50
2	9,13	10,47	1,24	+14	+132.78
3	10,31	11,34	1,03	+10	+89.62

Mean: +16 % +113.97 €/ha

^{*}control = isogenic hybrid withouth insecticide resistance

Potention of CRW resistant GM maize in Slovakia

GM sugar-beet H7-1 in field trials in Slovakia

GM sugar-beet H7-1 in field trials in Slovakia

Conventional sugar-beet						
Herbicide	Application I/ha kg/ha %	Cost per I, kg (€)	Cost per ha (€)			
T1 Goltix Top (I)	1.3	42.00	54.60			
Kontakttwin (I)	1.8	22.63	40.73			
T2 Mix double FL 2 (I)	1.0	32.08	32.08			
Safari 50 WG (kg)	0.03	1386.32	41.59			
0,05% Trend 90 (I)	0.1	9.60	0.96			
Agil 100 EC (I)	0.5	44.16	22.08			
T3 Betanal Expert (I)	1.0	51.50	51.50			
Goltix Top (I)	0.5	42.00	21.00			
Garland Forte (I)	0.8	44.19	35.35			
Cost 299.90 €						

Glyphosate resistant GM sugar-beet						
Herbicide Application I/ha kg/ha % Cost per I, kg (€) Cost per ha (€)						
Roundup Rapid (I)	2.4	11.58	27.79			
Roundup Rapid (I)	2.4	11.58	27.79			
Roundup Rapid (I)	2.4	11.58	27.79			
Cost 83.37 €						

Conclusions:

We are able to provide know-how for reciprocally profitable co-operation in topics:

- Breeding of new plant cultivars possessing novel and very specific traits
- Gene transfer technology for introduction of new traits into main cereals
- Long-term experiences in field testing of GM crops
- DNA profiling assays of plant genomes
- Development of protein and DNA-based diagnostic assays of plant pathogens